Spin effects in strong laser and plasma fields

Liangliang Ji

Shanghai Institute of Optics and Fine Mechanics Chinese Academy of Sciences

Dec. 1st, 2020 @ Shanghai

Acknowledgements

Xuesong Geng, Yitong Wu, Baifei Shen, Ruxin Li, Zhizhan Xu

Johannes Thomas, Alexander Pukhov (Germany)

Markus Buescher, Anna Huetzen (Germany)

T Peter Rakitzis (Greece)

NSFC、CAS-SPRP(中科院先导B)、HGF-ATHENA

Introduction of the laser facilities

- Spin effects in the SF-QED regime
- Generation of polarized particle sources
- Conclusions

Shanghai Light Source

SULF 10PW

X644

上海奕欧来 奥特莱斯

ShanghaiTech University

祝桥环

XFEL parameters: e-beams: 8-10 GeV Photons: 0.4-25 keV **Rep.rate:1MHz**

Shanghai XFEL (SHINE)

Shanghai Ultra-short and ultra-intense laser facility (SULF, 10PW)

1PW beamline:30J, 30fs, 0.1Hz 10PW beamline: 250J, 25fs

- **DMEC** : Dynamics of Materials under Extreme Conditions
- USAP: Ultrafast Sub-atomic Physics
- **MODEC** : Big Molecule Dynamics and Extreme-fast Chemistry

10PW-200PW laser facilities worldwide

Station of Extreme Light (SEL, 100PW)

Parameters for proposed experiments in SEL

Parameters		Nominal
	Photon Energy	3 - 15 keV
	Photons per pulse	1011-12
X-ray	Pulse length	20- 50 fs
	beam spot size	0.2-5 um
	Energy Resolution	0.6 eV
Laser	Focused intensity	1×10 ²³ W/cm ²
	Peak power	100 PW
		1Hz@0.1-1PW
	Repetition rate	Single shot@100PW

Pulse energy 1500J; duration 15fs; Central wavelength 900nm; Peak power 100 PW; Focused spot size 5µm; Intensity >10²³ W/cm²; Contrast ratio >10¹²

Station of Extreme Light (SEL, 100PW)

In SEL, the 100PW laser will collide with the XFEL beam, probing "vacuum birefringence" for the first time.

In QED, vacuum is full of virtual particle pairs that can

mediate light-light interaction forbidden in classical theory.

Plasma Phys. Control. Fusion 60 044002 (2018)

- Introduction of the laser facilities
- Spin effects in the SF-QED regime
- Generation of polarized particle sources
- Conclusions

Laser intensity VERSUS interaction regimes

With **10-100PW** laser, light intensity reaches beyond **10²²W/cm²**, lightmatter interaction steps into the new **Radiation-dominated & QED** regime.

OPN July(2011); Science 331, 41 (2011); Nature Material 15, 1(2016)

Extreme-field effects

A. M. Fedotov, N. B. Narozhny, G. Mourou et al., PRL105, 080402 (2010) N. V. Elkina, A. M. Fedotov, I. Yu. Kostyukov et al., PRST-AB 14, 054401 (2011) E. N. Nerush, I. Yu. Kostyukov, A. M. Fedotov et al., PRL106, 035001 (2011)

Liangliang Ji et al., Phys.Rev.Lett. 112, 145003 (2014). Liangliang Ji et al., Phys.Plasmas 21, 023109 (2014).

n (a.u

n. (a.u.

E, (*800)

-0.2

-0.6

Quantum behavior of relativistic particles in strong laser field

Landau-Lifschitz Equation

$$\begin{aligned} \frac{dp}{dt} &= e(\mathbf{E} + \frac{1}{c} \mathbf{v} \times \mathbf{B}) \\ &+ \frac{2e^3}{3mc^3} \gamma \left\{ (\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla) \mathbf{E} + \frac{1}{c} \mathbf{v} \times (\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla) \mathbf{B} \right\} \\ &+ \frac{2e^4}{3m^2c^4} \left\{ \mathbf{E} \times \mathbf{B} + \frac{1}{c} \mathbf{B} \times (\mathbf{B} \times \mathbf{v}) + \frac{1}{c} \mathbf{E} (\mathbf{v} \cdot \mathbf{E}) \right\} \\ &- \frac{2e^4}{3m^2c^5} \gamma^2 \mathbf{v} \left\{ (\mathbf{E} + \frac{1}{c} \mathbf{v} \times \mathbf{B})^2 - \frac{1}{c^2} (\mathbf{E} \cdot \mathbf{v})^2 \right\} \end{aligned}$$

Laser: 5×10²²W/cm² Electron: 500 MeV

Stochastic Photon emission

Emitting intensity

$$W_{ph} = \frac{\alpha m_e^2 c^4}{3\sqrt{3}\pi\hbar\epsilon} \int_0^\infty dx \frac{5x^2 + 7x + 5}{(1+x)^3} K_{2/3}\left(\frac{2x}{3\chi}\right)$$

Emitting probability

$$I_{ph} = \frac{e^2 m_e c^4}{3\sqrt{3}4\pi^2 \hbar^2} \int_0^\infty dx \frac{x(4x^2 + 5x + 4)}{(1+x)^4} K_{2/3}\left(\frac{2x}{3\chi}\right)$$

J. Sov. Laser Res. 6(5), 497 (1985)

z Communications Physics 2, 66 (2019)

Spin effects arise in the new regime

Spin dynamics: precession and deflection

$$\frac{ds}{dt} = \frac{e}{m} \left[\left(a_e + \frac{1}{\gamma} \right) \boldsymbol{B} - \frac{a_e \gamma}{\gamma + 1} \left(\boldsymbol{\beta} \cdot \boldsymbol{B} \right) \boldsymbol{\beta} - \left(a_e + \frac{1}{\gamma + 1} \right) \boldsymbol{\beta} \times \frac{\boldsymbol{E}}{c} \right] \times \boldsymbol{s}$$

V. Bargmann, L. Michel, A. V. L. Telegdi. Phys. Rev. Lett. 2, 435 (1959)

Non-radiative

The Stern-Gerlach force

 $F_{SG} = \nabla(\mu \cdot B)$

[1]Gerlach, Walther, and Otto Stern. 1922. *Zeitschrift für Physik* 9 (1): 349–52. <u>https://doi.org/10.1007/BF01326983</u>

The Stern-Gerlach experiment^[1]

Spin dynamics: The Sokolv-Ternov effect (radiative)

Radiative polarization $W_{\sigma}^{\uparrow\uparrow} = W^{\rm cl} \bigg\{ \frac{7}{8} - \xi \Big(\frac{25\sqrt{3}}{12} - \zeta \Big) + \xi^2 \Big(\frac{335}{18} + \frac{245\sqrt{3}}{48} \zeta \Big) + \cdots \bigg\},$ $W_{\sigma}^{\uparrow\downarrow} = W^{\rm cl} \frac{\xi^2}{12},$ $W_{\pi}^{\uparrow\uparrow} = W^{\rm cl} \bigg\{ \frac{1}{8} - \xi \frac{5\sqrt{3}}{24} + \xi^2 \frac{25}{18} + \cdots \bigg\},\,$ $W_{\pi}^{\uparrow\downarrow} = W^{\rm cl} \,\xi^2 \frac{23}{18} \bigg\{ 1 + \zeta \frac{105\sqrt{3}}{184} \bigg\}.$ $P_{\rm eq} = \frac{N_+ - N_-}{N_+ + N_-} = \frac{p_+ - p_-}{p_+ + p_-}$ $P(t) = P_{\rm ST} (1 - e^{-t/\tau_{\rm pol}})$

S R Mane et al 2005 Rep. Prog. Phys. 68 1997

Spin dynamics in strong laser field

 $= -\frac{\alpha}{2b} \left[2\operatorname{Ai}_{1}(z) + g \frac{4\operatorname{Ai}'(z)}{z} + \frac{s_{\zeta}}{2} 2t \frac{\operatorname{Ai}(z)}{\sqrt{z}} \right]$ [1] Ternov, I. M. 1995. Physics-Uspekhi

the spin states [2]

Brest

e

38 (4): 409.

[2] Seipt, D., D. Del Sorbo, C. P. Ridgers, and A. G. R. Thomas.. Physical Review A 98, 023417 (2018).

[3] Li, Yan-Fei, Rashid Shaisultanov, Karen Z. Hatsagortsyan, Feng Wan, Christoph H. Keitel, and Jian-Xing Li, Physical Review Letters 122, 154801(2019).

Generalized Sokolov-Ternov theory

Geng, X. S., Z. G. Bu, Y. T. Wu, Q. Q. Han, C. Y.
Qin, W. Q. Wang, X. Yan, L. G. Zhang, B. F. Shen, and L. L. Ji. 2020. *ArXiv:1912.03625 [Physics]*, March. <u>http://arxiv.org/abs/1912.03625</u>.

Generalized S-T

Define the transition probability
 along a complete and orthogonal
 axis

- $A = P^{\downarrow\uparrow}, B = P^{\uparrow\downarrow}$
- Build up Polarization along
 ζ, η, κ from spin flip rates
 P(t) =

$$\frac{A-B}{A+B}\left[1-\exp\left(-\frac{t}{\tau}\right)\right]+P_0\,\exp\left(-\frac{t}{\tau}\right)$$

Generalized Sokolov-Ternov theory

0.0

Transverse polarization

Reproduced the S-T effect

(spin is parallel/antiparallel

to the B-field)

Longitudinal polarization

Avoid information loss (spin is perpendicular to the B-field)

Spin-dependent deflection in the SFQED regime

Spin effects manifestation in radiation-reaction

Symmetry is broken when both effects are coupled to each other. A net momentum shift is induced along the s×k direction

High Power Laser Science and Engineering 8 (2020)

- Introduction of the laser facilities
- Spin effects in the SF-QED regime
- Generation of polarized particle sources
- Conclusions

Storage rings: The Sokolv-Ternov effect

$$\tau_{\rm pol}({\rm s}) \simeq 3654 \frac{(R/\rho)}{[B({\rm T})]^3 [E({\rm GeV})]^2} \qquad P_{\rm ST} = \frac{8}{5\sqrt{3}} \simeq 92.376\%$$

Radiative polarization

S R Mane et al 2005 Rep. Prog. Phys. 68 1997

Laser acceleration: High acceleration gradient

Conventional Accelerator (1km)

LHC, Higgs Boson, Nobel Prize(2013)

Radiofrequency cavity (1 m-long)

Laser Acceleration (1cm)

Is it possible to generate polarized electron in laser-driven wakefield acceleration?

Polarized electron acceleration: the S-T effect

Accelerate and then polarize in Storage

rings due to Sokolov-Ternov Effect

Sov.Phys. J. 10, 39-47 (1967)

$$T_{\rm pol, electron}^{-1} = \frac{5\sqrt{3}}{8}\hbar \frac{e^5 F^3 \gamma_e^2}{m_e^5 c^8}$$

Extract from polarized
atoms/photocathodes and accelerate in
Linacs
J. Phys. Conf. Ser. 295, 012151(2011). Appl.
Phys.Lett. 26, 670(1975)

Spin filters & Beam splitters

Phys. Rev. Lett. 82, 4216 (1999). Phys. Rev. Lett. 118, 070403(2017).

For typical LWFA $\gamma_e \sim 10^3$ and $F \sim 10^{16}$ V/m. One finds $T_{\text{pol},\text{S-T}} \sim 1 \mu \text{s}$ >> acceleration duration (~ns scale)

Phys. Rev. ST-AB 23, 064401(2020)

Polarized electron acceleration: spin splitter

Accelerate and then polarize in Storage rings due to Sokolov-Ternov Effect Sov.Phys. J. 10, 39–47 (1967)

Extract from polarized
atoms/photocathodes and accelerate in
Linacs
J. Phys. Conf. Ser. 295, 012151(2011). Appl.

Phys.Lett. 26, 670(1975)

Spin filters & Beam splitters

Phys. Rev. Lett. 82, 4216 (1999). Phys. Rev. Lett. 118, 070403(2017).

 $|F_{SG}/F_L| \sim |\nabla(S B)/\gamma_e^2 c B m_e| \sim \hbar/\lambda m_e c \gamma_e^2 <<1$

The Stern-Gerlach Force is negligible compared to laser-plasma fields

PRST-AB, in preparation

Colliding a 10 PW laser with multi-GeV electrons to split electrons of different spin states (spin-flip rates depending on the states)

PHYSICAL REVIEW LETTERS 122, 154801 (2019)

Pre-polarization + LWFA

How to prepare a 100% polarized electron target?

Is it possible to preserve the beam polarization during LWFA?

X Z UV light IR 1064nm IR light Drive Beam Nozzle **REMPI for CI** UV 235nm

100% pre-polarized electron target is feasible

Science 300, 1936 (2003); Eur. J. Chem. Phys. Phys. Chem. 5 1489 (2004); Phys. Rev. Lett. 121 083001 (2018)

Pre-polarization + LWFA

Particle spin in PIC simulations

Particle-In-Cell

$$\frac{ds^{n}}{dt} = \frac{ds_{\perp}^{n}}{dt} = -\Omega^{n} \times s^{n} = -\Omega^{n} \times s_{\perp}^{n}$$

$$s_{\parallel}^{n} = \frac{\Omega^{n} \cdot s^{n}}{|\Omega^{n}||} \frac{\Omega^{n}}{|\Omega^{n}||}, s_{\perp}^{n} = s^{n} - s_{\parallel}^{n}$$

$$r^{n} = \frac{-\Omega^{n} \times s_{\perp}^{n}}{|\Omega^{n}||}$$

$$\theta^{n} = |\Omega^{n}| \Delta t$$

$$s_{\perp}^{n+1} = s_{\perp}^{n} \cos(\theta^{n}) + r^{n} \sin(\theta^{n})$$

$$s^{n+1} = s_{\perp}^{n+1} + s_{\parallel}^{n}$$

Polarization in LWFA

Stage I: Laser-electron interaction
 Stage II: Injection (depolarization)

Stage III: Acceleration

 $8.6 \times 10^{18} \,\mathrm{W/cm^2}$, 21.4 fs, 10um, n_0 =10¹⁸ cm⁻³

Depolarization : self-generated fields

Strong restriction on beam flux to preserve polarization

Preserving polarization: new geometry?

Vortex LWFA: high beam charge but low current density

Peak current density and B-field

are 1/3 of the Gaussian beam driver.

The region of magnetic field is

significantly reduced.

Polarized electron acceleration: vortex LWFA

- Vortex LWFA preserves the beam polarization at very high beam charge/flux
- 10* enhancement at 80% polarization

New J. Phys. 21 073052(2019) Physical Review E 100, 043202 (2019)

Polarized electron acceleration: spin filter

- Spin precession is dependent on the azimuthal angle
- Precession is significant suppressed when spin is parallel/antiparallel to the magnetic field

Polarized electron acceleration: spin filter

Due to the symmetric
 bubble structure, the
 azimuthal angle is
 locked with the angle
 where electrons are
 emitted.

 High polarization purity observed at certain angles

Spin filter is possible by identifying electrons located in certain azimuthal angle region

Wu, Ji* et al., Phys. Rev. Applied (2020).

Polarized electron acceleration: spin filter

An X-shaped spin filter purifies electron polarization at any injected beam charge.

Wu, Ji* et al., Phys. Rev. Applied (2020).

LWFA towards the high energy frontier

Multi-staged LWFA or PWFA towards 100GeV

High beam polarization

for e-e⁺ collider

$$\begin{split} \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} (\mathrm{e}^{+}\mathrm{e}^{-} \to \mu^{+}\mu^{-}) &= \frac{r_{0}^{2}}{16\gamma^{2}} \beta_{\mu} \left\{ 2 - \beta_{\mu}^{2} \sin^{2}\theta [1 - |P_{1}||P_{2}|\cos(2\phi)] \right\},\\ \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} (\mathrm{e}^{+}\mathrm{e}^{-} \to \mathrm{e}^{+}\mathrm{e}^{-}) &= \frac{r_{0}^{2}}{16\gamma^{2}} \left(\frac{3 + \cos^{2}\theta}{1 - \cos\theta} \right)^{2} \left\{ 1 + \frac{|P_{1}||P_{2}|\sin^{4}\theta}{(3 + \cos^{2}\theta)^{2}} \cos(2\phi) \right\},\\ \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} (\mathrm{e}^{+}\mathrm{e}^{-} \to \gamma\gamma) &= \frac{r_{0}^{2}}{4\gamma^{2}(1 - \beta_{\mathrm{e}}^{2}\cos^{2}\theta)} \left\{ 1 + \cos^{2}\theta + |P_{1}||P_{2}|\sin^{2}\theta\cos(2\phi) \right\} \end{split}$$

Joshi, Physics Today, 2003

Baier V N 1969

High energy polarized particle beam

Particle physics, nuclear physics and material science

e-e⁺ collider

Nuclear physics

Material science

Institution	Location	Machine	Acronym
ANL	Argonne, IL, USA	ZGS	Zero Gradient Synchrotron
Berlin	Berlin, Germany	BESSY-I, II	_
BINP	Novosibirsk, Russia	VEPP-(2, 2M, 3, 4)	Colliding Electron-Positron Beams
BNL	Upton, NY, USA	AGS	Alternating Gradient Synchrotron
	85 Mil 1 Mil	RHIC	Relativistic Heavy-Ion Collider
CERN	Geneva, Switzerland	LEP	Large Electron-Positron Project
Cornell	Ithaca, NY, USA	CESR	Cornell Electron Storage Ring
DESY	Hamburg, Germany	DORIS	(Doppel Ring Speicher)
		HERA	Hadron-Elektron Ring Anlage
		PETRA	Positron-Electron Tandem Ring Accelerator
ELSA	Bonn, Germany	ELSA	Electron Stretcher Accelerator
IUCF	Bloomington, IN, USA	IUCF Cooler	Indiana University Cyclotron Facility Cooler
KEK	Tsukuba, Japan	KEK-B	KEK B-Factory
	225-7	KEK-PS	KEK Proton Synchrotron
		TRISTAN	(Tri-Ring Intersecting Storage Accelerators
			at Nippon)
LBNL	Berkeley, CA, USA	ALS	Advanced Light Source
MIT-Bates	Middleton, MA, USA	SHR	South Hall Ring
NIKHEF	Amsterdam, Netherlands	AmPS	Amsterdam Pulse Stretcher
Orsay	Gif-sur-Yvette, France	ACO	Anneau de Collisions d'Orsay
PSI	Villigen, Switzerland	SLS	Swiss Light Source
Saclay	Gif-sur-Yvette, France	SATURNE	_
SLAC	Palo Alto, CA, USA	PEP-2	PEP B-Factory
		SLC	Stanford Linear Collider
		SPEAR	(Stanford Positron Electron Asymmetric Rings)
TJLab	Newport News, VA, USA	CEBAF	Continuous Electron Beam Accelerator Facility

S R Mane et al 2005 Rep. Prog. Phys. 68 1997

Preparing 100% pre-polarized electron target

300 J @ 800 nm

protons in gas jet

Conclusions

- The world-leading 10-100PW laser facilities (SULF and SEL) in China take strong-field QED research as one of the major science cases.
- Spin is a new degree of freedom manifesting the essence of strong-field QED.
- Laser-driven wakefield acceleration is promising in providing compact polarized particle sources.

Thank you for your attention!